Search results
Results from the WOW.Com Content Network
The Nyquist–Shannon sampling theorem is an essential principle for digital signal processing linking the frequency ... But if the Nyquist criterion is not ...
One of the possible reasons is to reduce the Nyquist rate for more efficient storage. And it turns out that one can directly achieve the same result by sampling the bandpass function at a sub-Nyquist sample-rate that is the smallest integer-sub-multiple of frequency A that meets the baseband Nyquist criterion: f s > 2B.
In this example, f s is the sampling rate, and 0.5 cycle/sample × f s is the corresponding Nyquist frequency. The black dot plotted at 0.6 f s represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that ...
The Nyquist theorem relates this time-domain condition to an equivalent frequency-domain condition. The Nyquist criterion is closely related to the Nyquist–Shannon sampling theorem, with only a differing point of view.
Nyquist criterion may refer to: Nyquist stability criterion, a graphical technique for determining the stability of a feedback control system; Nyquist frequency, ½ of the sampling rate of a discrete signal processing system; Nyquist rate, a rate used in signal processing; Nyquist ISI criterion, a condition to avoid intersymbol interference
An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is ...
From January 2008 to December 2012, if you bought shares in companies when William J. Ryan joined the board, and sold them when he left, you would have a -30.6 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
Signal sampling representation. The continuous signal S(t) is represented with a green colored line while the discrete samples are indicated by the blue vertical lines. In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples".