Search results
Results from the WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.
For the limit , the magnetic diffusion equation = is just a vector-valued form of the heat equation. For a localized initial magnetic field (e.g. Gaussian distribution) within a conducting material, the maxima and minima will asymptotically decay to a value consistent with Laplace's equation for the given boundary conditions.
The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field.Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter.
In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]
To a first order approximation, the temperature dependence of spontaneous magnetization at low temperatures is given by the Bloch T 3/2 law: [1]: 708 = ((/) /),where M(0) is the spontaneous magnetization at absolute zero.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The ring current system consists of a band, at a distance of 3 to 8 R E, [1] which lies in the equatorial plane and circulates clockwise around the Earth (when viewed from the north). The particles of this region produce a magnetic field in opposition to the Earth's magnetic field and so an Earthly observer would observe a decrease in the ...
The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere (r < 10 a; with a the Earth's radius) - the convection field. [1] Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field B o.