enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1.; The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit.

  3. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around ...

  5. Orbital resonance - Wikipedia

    en.wikipedia.org/wiki/Orbital_resonance

    Kepler-1649 contains two Earth-size planets close to a 9:4 resonance (with periods of 19.53527 and 8.689099 days, or a period ratio of 2.24825), including one in the habitable zone. An undetected planet with a 13.0-day period would create a 3:2 resonance chain. [66]

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  7. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Here, the ratio of the rotation period of a body to its own orbital period is some simple fraction different from 1:1. A well known case is the rotation of Mercury, which is locked to its own orbit around the Sun in a 3:2 resonance. [2] This results in the rotation speed roughly matching the orbital speed around perihelion. [14]

  8. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses. The value of k historically expresses the mean angular velocity of the system of Earth+Moon and the Sun considered as a two body problem, with a value of about 0.986 degrees per day, or about 0.0172 radians per day.

  9. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    To illustrate then, without accounting for the effects of rotation, proximity to Earth's gravitational well will cause a clock on the planet's surface to accumulate around 0.0219 fewer seconds over a period of one year than would a distant observer's clock.