enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Solving quadratic equations with continued fractions. In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is. where a ≠ 0. The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  4. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A continued fraction is an expression of the form. where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction. The successive convergents of the continued fraction are formed by applying the fundamental recurrence formulas:

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz. [3] In symbols, the partial fraction decomposition of a rational fraction of the form where f and g are polynomials, is the expression of the rational fraction as. {\displaystyle {\frac {f (x)} {g (x)}}=p (x)+\sum _ {j} {\frac {f_ {j} (x)} {g_ {j ...

  6. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    The reverse process of expressing a proper rational fraction as the sum of two or more fractions is called resolving it into partial fractions. For example, For example, 2 x x 2 − 1 = 1 x − 1 + 1 x + 1 . {\displaystyle {\frac {2x}{x^{2}-1}}={\frac {1}{x-1}}+{\frac {1}{x+1}}.}

  7. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    Multiply both sides by x to get . Subtract 1 from each side to get The right side can be factored, Dividing both sides by x − 1 yields Substituting x = 1 yields. This is essentially the same fallacious computation as the previous numerical version, but the division by zero was obfuscated because we wrote 0 as x − 1.

  8. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cube root. In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other ...

  9. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.