Search results
Results from the WOW.Com Content Network
To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).
Autoencoders are often trained with a single-layer encoder and a single-layer decoder, but using many-layered (deep) encoders and decoders offers many advantages. [2] Depth can exponentially reduce the computational cost of representing some functions. Depth can exponentially decrease the amount of training data needed to learn some functions.
If the input is a continuous-time analog signal, it needs to be sampled first so that a discrete-time signal is the input to the DPCM encoder. Option 1: take the values of two consecutive samples; if they are analog samples, quantize them; calculate the difference between the first one and the next; the output is the difference.
Suppose we want to encode the message "AABA<EOM>", where <EOM> is the end-of-message symbol. For this example it is assumed that the decoder knows that we intend to encode exactly five symbols in the base 10 number system (allowing for 10 5 different combinations of symbols with the range [0, 100000)) using the probability distribution {A: .60; B: .20; <EOM>: .20}.
One encoder-decoder block A Transformer is composed of stacked encoder layers and decoder layers. Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding ...
During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1]In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text.
In that way, the same parameters are reused for multiple data points, which can result in massive memory savings. The first neural network takes as input the data points themselves, and outputs parameters for the variational distribution. As it maps from a known input space to the low-dimensional latent space, it is called the encoder.
FEC processing in a receiver may be applied to a digital bit stream or in the demodulation of a digitally modulated carrier. For the latter, FEC is an integral part of the initial analog-to-digital conversion in the receiver. The Viterbi decoder implements a soft-decision algorithm to