enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]

  3. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of free convection heat transfer make it necessary to mainly use empirical relations from experimental data. [12] Heat transfer is analyzed in packed beds, nuclear reactors and heat exchangers.

  4. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    where ˙ is the heat transferred per unit time, A is the area of the object, h is the heat transfer coefficient, T is the object's surface temperature, and T f is the fluid temperature. [8] The convective heat transfer coefficient is dependent upon the physical properties of the fluid and the physical situation.

  5. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [ 2 ] [ 3 ] [ 4 ] It characterises the fluid's flow regime: [ 5 ] a value in a certain lower range denotes laminar flow ; a value in a higher range ...

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The lumped capacitance solution that follows assumes a constant heat transfer coefficient, as would be the case in forced convection. For free convection, the lumped capacitance model can be solved with a heat transfer coefficient that varies with temperature difference. [8]

  7. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .

  8. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]

  9. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    The ratio of the Grashof number to the square of the Reynolds number may be used to determine if forced or free convection may be neglected for a system, or if there's a combination of the two. This characteristic ratio is known as the Richardson number (Ri). If the ratio is much less than one, then free convection may be ignored.