Search results
Results from the WOW.Com Content Network
The brain parenchyma refers to the functional tissue in the brain that is made up of the two types of brain cell, neurons and glial cells. [7] It is also known to contain collagen proteins. [8] Damage or trauma to the brain parenchyma often results in a loss of cognitive ability or even death.
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...
A CT scan is the best test to look for bleeding in or around your brain. In some hospitals, a perfusion CT scan may be done to see where the blood is flowing and not flowing in your brain. Magnetic resonance imaging (MRI scan): A special MRI technique (diffusion MRI) may show evidence of an ischemic stroke within minutes of symptom onset. In ...
Intracerebral hemorrhage (ICH), also known as hemorrhagic stroke, is a sudden bleeding into the tissues of the brain (i.e. the parenchyma), into its ventricles, or into both. [ 3 ] [ 4 ] [ 1 ] An ICH is a type of bleeding within the skull and one kind of stroke (ischemic stroke being the other).
The death of neurons leads to a so-called softening of the cerebrum in the affected area. [ citation needed ] [ 3 ] Hemorrhage : Intracerebral hemorrhage occurs in deep penetrating vessels and disrupts the connecting pathways, causing a localized pressure injury and in turn injury to brain tissue in the affected area.
Viral encephalitis is inflammation of the brain parenchyma, called encephalitis, by a virus. The different forms of viral encephalitis are called viral encephalitides. It is the most common type of encephalitis and often occurs with viral meningitis.
Intracranial hemorrhage is a serious medical emergency because the buildup of blood within the skull can lead to increases in intracranial pressure, which can crush delicate brain tissue or limit its blood supply.
The pathophysiology of tuberculous meningitis involves bacterial invasion of the brain parenchyma meninges or cortex, causing the formation of small subpial foci. These foci, termed Rich foci, are necrotic and expand as the colonies within them multiply.