Search results
Results from the WOW.Com Content Network
A physical property is any property of a physical system that is measurable. [1] The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables.
A phase is a form of matter that has a relatively uniform chemical composition and physical properties (such as density, specific heat, refractive index, and so forth). These phases include the three familiar ones ( solids , liquids , and gases ), as well as more exotic states of matter (such as plasmas , superfluids , supersolids , Bose ...
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
In this state, the distinction between liquid and gas disappears. A supercritical fluid has the physical properties of a gas, but its high density confers solvent properties in some cases, which leads to useful applications. For example, supercritical carbon dioxide is used to extract caffeine in the manufacture of decaffeinated coffee. [3]
The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. [10] More generally properties can be combined to give new properties, which may be called derived or composite ...
(See state of matter § Glass.) More precisely, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. [1] [2]: 86 [3]: 3 Examples of physical properties include density, index of refraction, magnetization and chemical composition.
The first law specifies that energy can be transferred between physical systems as heat, as work, and with transfer of matter. [5] The second law defines the existence of a quantity called entropy , that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.