Search results
Results from the WOW.Com Content Network
Maintenance respiration in plants refers to the amount of cellular respiration, measured by the carbon dioxide (CO 2) released or oxygen (O 2) consumed, during the generation of usable energy (mainly ATP, NADPH, and NADH) and metabolic intermediates used for (i) resynthesis of compounds that undergo renewal (turnover) in the normal process of metabolism (examples are enzymatic proteins ...
In humans and other mammals, the anatomy of a typical respiratory system is the respiratory tract.The tract is divided into an upper and a lower respiratory tract.The upper tract includes the nose, nasal cavities, sinuses, pharynx and the part of the larynx above the vocal folds.
Aerobic respiration requires oxygen (O 2) in order to create ATP. Although carbohydrates , fats and proteins are consumed as reactants , aerobic respiration is the preferred method of pyruvate production in glycolysis , and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle .
Maintenance of an organism is the collection of processes to stay alive, excluding production processes. The Dynamic Energy Budget theory delineates two classes . Somatic maintenance mainly comprises the turnover of structural mass (mainly proteins) and the maintenance of concentration gradients of metabolites across membranes (e.g., counteracting leakage).
Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.
Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration. [1] The most important function of breathing is the supplying of oxygen to the body and balancing of the carbon dioxide levels.
Respiration is driven by different muscular systems in different species. Mammals, reptiles and birds use their musculoskeletal systems to support and foster breathing. In early tetrapods, air was driven into the lungs by the pharyngeal muscles via buccal pumping , a mechanism still seen in amphibians.
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.