Search results
Results from the WOW.Com Content Network
Magnetic levitation can be stabilised using different techniques; here rotation (spin) is used. Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces. [2]
Magnetic levitation is in development for use for transportation systems. For example, the Maglev includes trains that are levitated by a large number of magnets. Due to the lack of friction on the guide rails, they are faster, quieter, and smoother than wheeled mass transit systems.
A magnetic bearing. A magnetic bearing is a type of bearing that supports a load using magnetic levitation. Magnetic bearings support moving parts without physical contact. For instance, they are able to levitate a rotating shaft and permit relative motion with very low friction and no mechanical wear. Magnetic bearings support the highest ...
Transrapid 09 at the Emsland test facility in Lower Saxony, Germany A full trip on the Shanghai Transrapid maglev train Example of low-speed urban maglev system, Linimo. Maglev (derived from magnetic levitation) is a system of rail transport whose rolling stock is levitated by electromagnets rather than rolled on wheels, eliminating rolling resistance.
Electromagnetic suspension (EMS) is the magnetic levitation of an object achieved by constantly altering the strength of a magnetic field produced by electromagnets using a feedback loop. In most cases the levitation effect is mostly due to permanent magnets as they have no power dissipation, with electromagnets only used to stabilise the effect.
Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart. These time-varying magnetic fields can be caused by relative motion between two ...
Diamagnets may be levitated in stable equilibrium in a magnetic field, with no power consumption. Earnshaw's theorem seems to preclude the possibility of static magnetic levitation. However, Earnshaw's theorem applies only to objects with positive susceptibilities, such as ferromagnets (which have a permanent positive moment) and paramagnets ...
Magnetic field lines, represented as arrows, are excluded from a superconductor when it is below its critical temperature. In condensed-matter physics , the Meissner effect (or Meißner–Ochsenfeld effect ) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the ...