Search results
Results from the WOW.Com Content Network
Balanced number partitioning is a variant of multiway number partitioning in which there are constraints on the number of items allocated to each set. The input to the problem is a set of n items of different sizes, and two integers m, k. The output is a partition of the items into m subsets, such that the number of items in each subset is at ...
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
Such a partition is called a partition with distinct parts. If we count the partitions of 8 with distinct parts, we also obtain 6: 8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n).
The partition problem - a special case of multiway number partitioning in which the number of subsets is 2. The 3-partition problem - a different and harder problem, in which the number of subsets is not considered a fixed parameter, but is determined by the input (the number of sets is the number of integers divided by 3).
Download QR code; Print/export ... Pages in category "Number partitioning" The following 12 pages are in this category, out of 12 total. ... recent changes. 0–9. 3 ...
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
In computer science, the largest differencing method is an algorithm for solving the partition problem and the multiway number partitioning. It is also called the Karmarkar–Karp algorithm after its inventors, Narendra Karmarkar and Richard M. Karp . [ 1 ]
For a partition of V into subsets U and W, an edge xy is balanced if either s(xy) = + and x and y are in the same subset, or s(xy) = – and x and y are different subsets. BSP aims at finding a partition with the maximum number b(G) of balanced edges in G. The Edwards-ErdÅ‘s gives a lower bound on b(G) for every connected signed graph G.