enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ⁡ ( x ) = cos ⁡ ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  5. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .

  7. Bhāskara I's sine approximation formula - Wikipedia

    en.wikipedia.org/wiki/Bhāskara_I's_sine...

    The constants a, b, c, p, q and r (only five of them are independent) can be determined by assuming that the formula must be exactly valid when x = 0, π/6, π/2, π, and further assuming that it has to satisfy the property that sin(x) = sin(π − x). [2] [3] This procedure produces the formula expressed using radian measure of angles.

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  9. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b 2N m, when struck by the other object. [1] (This gives the digits of π in base b up to N digits past the radix point.)