Search results
Results from the WOW.Com Content Network
The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.
An arithmetico-geometric series is a series that has terms which are each the product of an element of an arithmetic progression with the corresponding element of a geometric progression. Example: 3 + 5 2 + 7 4 + 9 8 + 11 16 + ⋯ = ∑ n = 0 ∞ ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum ...
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. [1] More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other.
The convex series = is said to be a convergent series if the sequence of partial sums (=) = converges in to some element of , which is called the sum of the convex series. The convex series is called Cauchy if = is a Cauchy series, which by definition means that the sequence of partial sums (=) = is a Cauchy sequence.
of p-tuples of elements of G whose product (in order) gives the identity. Such a p-tuple is uniquely determined by all its components except the last one, as the last element must be the inverse of the product of those preceding elements. One also sees that those p − 1 elements can be chosen freely, so X has | G | p −1 elements, which is ...
A discrete convolution of the terms in two formal power series turns a product of generating functions into a generating function enumerating a convolved sum of the original sequence terms (see Cauchy product). Consider A(z) and B(z) are ordinary generating functions.
[2] The Levi-Civita field is also Cauchy complete, meaning that relativizing the definitions of Cauchy sequence and convergent sequence to sequences of Levi-Civita series, each Cauchy sequence in the field converges. Equivalently, it has no proper dense ordered field extension.