enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

  3. Decomposition of a module - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_a_module

    A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).

  4. Glossary of module theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_module_theory

    A direct sum of modules is a module that is the direct sum of the underlying abelian group together with component-wise scalar multiplication. dual module The dual module of a module M over a commutative ring R is the module Hom R ⁡ ( M , R ) {\displaystyle \operatorname {Hom} _{R}(M,R)} .

  5. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    An element in the direct product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both.

  6. Structure theorem for finitely generated modules over a ...

    en.wikipedia.org/wiki/Structure_theorem_for...

    Torsionfree modules over a Dedekind domain are determined (up to isomorphism) by rank and Steinitz class (which takes value in the ideal class group), and the decomposition into a direct sum of copies of R (rank one free modules) is replaced by a direct sum into rank one projective modules: the individual summands are not uniquely determined ...

  7. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.

  8. Direct sum of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_groups

    In mathematics, a group G is called the direct sum [1] [2] of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information.

  9. Semi-simplicity - Wikipedia

    en.wikipedia.org/wiki/Semi-simplicity

    Another example from algebraic geometry is the category of pure motives of smooth projective varieties over a field k ⁡ modulo an adequate equivalence relation. As was conjectured by Grothendieck and shown by Jannsen , this category is semi-simple if and only if the equivalence relation is numerical equivalence . [ 6 ]