Search results
Results from the WOW.Com Content Network
The spiral is a frequent symbol for spiritual purification, both within Christianity and beyond (one thinks of the spiral as the neo-Platonist symbol for prayer and contemplation, circling around a subject and ascending at the same time, and as a Buddhist symbol for the gradual process on the Path to Enlightenment).
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
The version on the right shows the effect of quantizing it to 16 colors and dithering using the 8×8 ordered dithering pattern. The characteristic 17 patterns of the 4×4 ordered dithering matrix can be seen clearly when used with only two colors, black and white. Each pattern is shown above the corresponding undithered shade.
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by for plotting. [13] [predatory publisher]
The representation of the Fermat spiral in polar coordinates (r, φ) is given by the equation = for φ ≥ 0. The parameter is a scaling factor affecting the size of the spiral but not its shape. The two choices of sign give the two branches of the spiral, which meet smoothly at the origin.
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
An animation that shows how the turtle is used to create graphics by combining forward and turn commands while a pen is touching the paper A spiral drawn with an iterative turtle graphics algorithm A turtle graphic pattern drawn with a Python program. The turtle has three attributes: a location, an orientation (or direction), and a pen.
A Doyle spiral of type (8,16) printed in 1911 in Popular Science as an illustration of phyllotaxis. [1] One of its spiral arms is shaded. In the mathematics of circle packing, a Doyle spiral is a pattern of non-crossing circles in the plane in which each circle is surrounded by a ring of six tangent circles.