Search results
Results from the WOW.Com Content Network
Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...
Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...
In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. This is possible for simple PDEs, which are called separable partial differential equations , and the domain is generally a rectangle (a product of intervals).
Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas also works as a spreadsheet; [11]
For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.
Often a partial differential equation can be reduced to a simpler form with a known solution by a suitable change of variables. The article discusses change of variable for PDEs below in two ways: by example; by giving the theory of the method.
The characteristics of the PDE are = (where sign states the two solutions to quadratic equation), so we can use the change of variables = + (for the positive solution) and = (for the negative solution) to transform the PDE to =.
Numerical Methods for Partial Differential Equations is a bimonthly peer-reviewed scientific journal covering the development and analysis of new methods for the numerical solution of partial differential equations. It was established in 1985 and is published by John Wiley & Sons.