Search results
Results from the WOW.Com Content Network
Magnetic flux. In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber (Wb; in derived units, volt–seconds or V⋅s), and the CGS unit is the maxwell. [1]
The shape of the magnetic fields of a permanent magnet and an electromagnet are revealed by the orientation of iron filings sprinkled on pieces of paper. A magnetic field (sometimes called B-field[1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials.
Faraday's law states that the emf is also given by the rate of change of the magnetic flux: where is the electromotive force (emf) and ΦB is the magnetic flux. The direction of the electromotive force is given by Lenz's law. The laws of induction of electric currents in mathematical form was established by Franz Ernst Neumann in 1845.
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current.
The Maxwell–Faraday version of Faraday's law of induction describes how a time-varying magnetic field corresponds to curl of an electric field. [3] In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction. Lenz's law describes the direction ...
In physics, specifically electromagnetism, the Biot–Savart law (/ ˈbiːoʊ səˈvɑːr / or / ˈbjoʊ səˈvɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law is ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism. The most familiar effects occur in ferromagnetic ...