Search results
Results from the WOW.Com Content Network
4.2 Another example for the matrix version. ... 4.4 An example using Python and NumPy. ... Download as PDF; Printable version;
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
Arguments: A: nxn numpy matrix. b: n dimensional numpy vector. omega: relaxation factor. initial_guess: An initial solution guess for the solver to start with. convergence_criteria: The maximum discrepancy acceptable to regard the current solution as fitting.
To avoid installing the large SciPy package just to get an array object, this new package was separated and called NumPy. Support for Python 3 was added in 2011 with NumPy version 1.5.0. [15] In 2011, PyPy started development on an implementation of the NumPy API for PyPy. [16] As of 2023, it is not yet fully compatible with NumPy. [17]
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.
The Python code below assumes the input graph is given as a -adjacency matrix with zeros on the diagonal. It defines the function APD which returns a matrix with entries D i , j {\displaystyle D_{i,j}} such that D i , j {\displaystyle D_{i,j}} is the length of the shortest path between the vertices i {\displaystyle i} and j {\displaystyle j} .
In all versions of Python, boolean operators treat zero values or empty values such as "", 0, None, 0.0, [], and {} as false, while in general treating non-empty, non-zero values as true. The boolean values True and False were added to the language in Python 2.2.1 as constants (subclassed from 1 and 0 ) and were changed to be full blown ...