Search results
Results from the WOW.Com Content Network
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]
General simulation and Monte Carlo sampling software GNU Octave: John W. Eaton 1988 1993 7.3.0 2 November 2022: Free GPL: General numerical computing package with many extension modules. Syntax mostly compatible with MATLAB IGOR Pro: WaveMetrics 1986 1988 8.00 May 22, 2018: $995 (commercial) $225 upgrade, $499 (academic) $175 upgrade, $85 (student)
SageMath is an open-source math software, [12] with a unified Python interface which is available as a text interface or a graphical web-based one. Includes interfaces for open-source and proprietary general purpose CAS, and other numerical analysis programs, like PARI/GP, GAP, gnuplot, Magma, and Maple.
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
Octave programs consist of a list of function calls or a script. The syntax is matrix-based and provides various functions for matrix operations. It supports various data structures and allows object-oriented programming. [26] Its syntax is very similar to MATLAB, and careful programming of a script will allow it to run on both Octave and ...
The function f : R → R defined by f(x) = x 3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial equation x 3 − 3x − y = 0, and every cubic polynomial with real coefficients has at least one real root. However, this function is not injective (and hence not bijective), since, for ...
Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.