enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample entropy - Wikipedia

    en.wikipedia.org/wiki/Sample_entropy

    Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...

  3. Approximate entropy - Wikipedia

    en.wikipedia.org/wiki/Approximate_entropy

    Lower computational demand. ApEn can be designed to work for small data samples (< points) and can be applied in real time. Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

  4. Unevenly spaced time series - Wikipedia

    en.wikipedia.org/wiki/Unevenly_spaced_time_series

    Traces is a Python library for analysis of unevenly spaced time series in their unaltered form.; CRAN Task View: Time Series Analysis is a list describing many R (programming language) packages dealing with both unevenly (or irregularly) and evenly spaced time series and many related aspects, including uncertainty.

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic process.

  6. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: . curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one;

  7. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    The "moving average filter" is a trivial example of a Savitzky–Golay filter that is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. Each subset of the data set is fit with a straight horizontal line as opposed to a higher order polynomial.

  8. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained by estimating the covariance (e.g. by maximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. by Cholesky decomposition).

  9. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.