Search results
Results from the WOW.Com Content Network
The bromide ion acquires a positive formal charge. At this moment the halogen ion is called a "bromonium ion" or "chloronium ion", respectively. When the first bromine atom attacks the carbon–carbon π-bond, it leaves behind one of its electrons with the other bromine that it was bonded to in Br 2. That other atom is now a negative bromide ...
Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method. The iodine number and bromine number are measures of the degree of unsaturation for fats and other organic compounds.
For example, ethene + bromine → 1,2-dibromoethane: C 2 H 4 + Br 2 → BrCH 2 CH 2 Br. This takes the form of 3 main steps shown below; [3] Forming of a π-complex The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-complex 1. Forming of a three-membered bromonium ion
Since phenols are acidic, they readily react with a strong base like sodium hydroxide to form phenoxide ions. The phenoxide ion will then substitute the –X group in the alkyl halide, forming an ether with an aryl group attached to it in a reaction with an S N 2 mechanism. C 6 H 5 OH + OH − → C 6 H 5 –O − + H 2 O C 6 H 5 –O − + R ...
Ethane can react with the halogens, especially chlorine and bromine, by free-radical halogenation. This reaction proceeds through the propagation of the ethyl radical: [36] Cl 2 → 2 Cl• C 2 H 6 • + Cl• → C 2 H 5 • + HCl C 2 H 5 • + Cl 2 → C 2 H 5 Cl + Cl• Cl• + C 2 H 6 → C 2 H 5 • + HCl
NBS reacts with alkenes in aqueous solvents to give bromohydrins. The preferred conditions are the portionwise addition of NBS to a solution of the alkene in 50% aqueous DMSO, DME, THF, or tert-butanol at 0 °C. [3] Formation of a bromonium ion and immediate attack by water gives strong Markovnikov addition and anti stereochemical selectivities ...
The silver salt 1 reacts with bromine to form the acyl hypohalite intermediate 2. Formation of the diradical pair 3 allows for radical decarboxylation to form the diradical pair 4, which recombines to form the organic halide 5. The trend in the yield of the resulting halide is primary > secondary > tertiary. [2] [3]
A 2014 study suggests that bromine (in the form of bromide ion) is a necessary cofactor in the biosynthesis of collagen IV, making the element essential to basement membrane architecture and tissue development in animals. [11] Nevertheless, no clear deprivation symptoms or syndromes have been documented in mammals. [75]