Ads
related to: discrete mathematics vertex worksheet solutions 1 and answers gradekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
The adjacent-vertex-distinguishing-total-chromatic number χ at (G) of a graph G is the fewest colors needed in an AVD-total-coloring of G. The following lower bound for the AVD-total chromatic number can be obtained from the definition of AVD-total-coloring: If a simple graph G has two adjacent vertices of maximum degree, then χ at ( G ) ≥ ...
For instance, in the octahedron graph, shown in the figure, each vertex has a neighbourhood isomorphic to a cycle of four vertices, so the octahedron is locally C 4. For example: Any complete graph K n is locally K n-1. The only graphs that are locally complete are disjoint unions of complete graphs. A Turán graph T(rs,r) is locally T((r-1)s,r ...
A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with . In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph.
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex. The algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník [ 1 ] and later rediscovered and republished by computer scientists Robert C. Prim ...
Ads
related to: discrete mathematics vertex worksheet solutions 1 and answers gradekutasoftware.com has been visited by 10K+ users in the past month