enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cut (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cut_(graph_theory)

    A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...

  3. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Many practical problems can be represented by graphs. Emphasizing their application to real-world systems, the term network is sometimes defined to mean a graph in which attributes (e.g. names) are associated with the vertices and edges, and the subject that expresses and understands real-world systems as a network is called network science.

  6. Minimum cut - Wikipedia

    en.wikipedia.org/wiki/Minimum_cut

    In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric. Variations of the minimum cut problem consider weighted graphs, directed graphs, terminals, and partitioning the vertices into more than two sets.

  7. Closure problem - Wikipedia

    en.wikipedia.org/wiki/Closure_problem

    The capacity of the cut equals the weight of all positive-weight vertices minus the weight of the vertices in C, which is minimized when the weight of C is maximized. By the max-flow min-cut theorem, a minimum cut, and the optimal closure derived from it, can be found by solving a maximum flow problem. [1]

  8. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...

  9. Bridge (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Bridge_(graph_theory)

    A graph with 16 vertices and six bridges (highlighted in red) An undirected connected graph with no bridge edges. In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. [1] Equivalently, an edge is a bridge if and only if it is not contained in any cycle.