enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent .

  4. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    When the damping factor ⁠ ⁠ is large relative to ‖ ‖, inverting + is not necessary, as the update is well-approximated by the small gradient step [()]. To make the solution scale invariant Marquardt's algorithm solved a modified problem with each component of the gradient scaled according to the curvature.

  5. Broyden–Fletcher–Goldfarb–Shanno algorithm - Wikipedia

    en.wikipedia.org/wiki/Broyden–Fletcher...

    In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems. [1] Like the related Davidon–Fletcher–Powell method, BFGS determines the descent direction by preconditioning the gradient with curvature information.

  6. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  7. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast. A nice property is that the number of computations is independent of the number of parameters for which you want the gradient. The adjoint method is derived from the dual problem [4] and is used e.g. in the Landweber iteration ...

  8. Stochastic gradient Langevin dynamics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_Gradient_Langev...

    SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics , the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations , namely those whose matrix is positive-semidefinite .