Search results
Results from the WOW.Com Content Network
The Himalayan tectonics result in long term deformation. This includes shortening across the Himalayas that range from 900 to 1,500 km. Said shortening is a product of the significant ongoing seismic activity. The continued convergence of the Indian plate with the Eurasian plate results in mega earthquakes.
A hypothetical lost oceanic plate called the Kshiroda Plate is supposed to have existed between the two subduction zones. It is now believed that this oceanic plate is actually a broken-off fragment of the above mentioned "Neo-Tethys oceanic basin". The bed of the Tethys sea lay on the Kshiroda Plate and was carried along with it towards Eurasia.
In the heart of Asia, deep underground, two huge tectonic plates are crashing into each other — a violent but slow-motion bout of geological bumper cars that over time has sculpted the soaring ...
The movement of the Indian plate toward the Eurasian plate starting 71 million years ago at the average speed of 5–15 centimetres (2.0–5.9 in) per year Folded layers of Himalayan rock, exposed in a cliff about 3 kilometres (1.9 mi) northeast of Jomsom, in the Kali Gandaki Gorge in Nepal The Indus River in the foreground and the Nanga Parbat ...
Satellite image of the Himalayas Spatial arrangement of the Himalayan tectonostratigraphic zones. Modified from N.R. McKenzie et al 2011 [1]. Pre-collisional Himalaya is the arrangement of the Himalayan rock units before mountain-building processes resulted in the collision of Asia and India.
The Alpide belt or Alpine-Himalayan orogenic belt, [1] or more recently and rarely the Tethyan orogenic belt, is a seismic and orogenic belt that includes an array of mountain ranges extending for more than 15,000 kilometres (9,300 mi) along the southern margin of Eurasia, stretching from Java and Sumatra, through the Indochinese Peninsula, the Himalayas and Transhimalayas, the mountains of ...
Due to continental drift, the India Plate split from Madagascar and collided with the Eurasian Plate resulting in the formation of the Himalayas.. The earliest phase of tectonic evolution was marked by the cooling and solidification of the upper crust of the earth's surface in the Archaean Era (prior to 2.5 billion years) which is represented by the exposure of gneisses and granites especially ...
This results in the Eurasian Plate being thrusted up leading to the rise of the Tibetan Plateau, bounded to the south by the collisional Himalayan mountain range. The Himalayan foreland basin is adjacent to the Himalayan mountain belt; it laps onto the Indian Craton to the south and is bounded by stacked thrust sheets of the Himalayas to the ...