Search results
Results from the WOW.Com Content Network
The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator. Logarithms are easy to compute in some cases, such as log 10 (1000) = 3. In general, logarithms can be calculated using power series or the arithmetic–geometric mean, or be retrieved from a precalculated logarithm table that provides a fixed precision.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
The binary logarithm is the logarithm to the base 2 and is the inverse ... HP-35 scientific calculator (1972). The log ... Return to step 1 and compute the binary ...
The first step away from slide rules was the introduction of relatively inexpensive electronic desktop scientific calculators. These included the Wang Laboratories LOCI-2, [ 31 ] [ 32 ] introduced in 1965, which used logarithms for multiplication and division; and the Hewlett-Packard HP 9100A , introduced in 1968. [ 33 ]
A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.
Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have () ′ = ( + ) ′ = () ′ + () ′.