Search results
Results from the WOW.Com Content Network
In the Type 212 this has been countered by storing the fuel and oxidizer in tanks outside the crew space, between the pressure hull and outer light hull. The gases are piped through the pressure hull to the fuel cells as needed to generate electricity, but at any given time there is only a very small amount of gas present in the crew space.
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to ...
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of ...
English: Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Program Fuel cell comparison chart. This shows a summary of the different types of fuel cells. Materials on the EERE Web site are in the public domain.
A Type 212 submarine of the German Navy, equipped with a fuel-cell AIP. A diagram of the fuel-cell AIP module developed by the DRDO of India. Siemens has developed a 30–50 kilowatt fuel cell unit, a device that converts the chemical energy from a fuel and oxidiser into electricity. Fuel cells differ from batteries in that they require a ...
Ruthenium and platinum are often used together, if carbon monoxide (CO) is a product of the electro-chemical reaction as CO poisons the PEM and impacts the efficiency of the fuel cell. Due to the high cost of these and other similar materials, research is being undertaken to develop catalysts that use lower cost materials as the high costs are ...
A block diagram of a fuel cell. Design features in a fuel cell include: The electrolyte substance, which usually defines the type of fuel cell, and can be made from a number of substances like potassium hydroxide, salt carbonates, and phosphoric acid. [21] The most common fuel that is used is hydrogen.
The alkaline fuel cell used by NASA in 1960s for Apollo and Space Shuttle program generated electricity at nearly 70% efficiency using aqueous solution of KOH as an electrolyte. In that situation, CO 2 coming in through oxidant air stream and generated as by product from oxidation of methanol, if methanol is the fuel, reacts with electrolyte ...