enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slipped strand mispairing - Wikipedia

    en.wikipedia.org/wiki/Slipped_strand_mispairing

    DNA polymerase, the main enzyme to catalyze the polymerization of free deoxyribonucleotides into a newly forming DNA strand, plays a significant role in the occurrence of this mutation. When DNA polymerase encounters a direct repeat, it can undergo a replication slippage. [4] Strand slippage may also occur during the DNA synthesis step of DNA ...

  3. Nucleic acid thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_thermodynamics

    The process of DNA denaturation can be used to analyze some aspects of DNA. Because cytosine / guanine base-pairing is generally stronger than adenine / thymine base-pairing, the amount of cytosine and guanine in a genome is called its GC-content and can be estimated by measuring the temperature at which the genomic DNA melts. [2]

  4. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    Protein denaturation is also a consequence of cell death. [4] [5] Denatured proteins can exhibit a wide range of characteristics, from conformational change and loss of solubility or dissociation of cofactors to aggregation due to the exposure of hydrophobic groups. The loss of solubility as a result of denaturation is called coagulation. [6]

  5. Polymerase chain reaction optimization - Wikipedia

    en.wikipedia.org/wiki/Polymerase_chain_reaction...

    Secondary structures in the DNA can result in folding or knotting of DNA template or primers, leading to decreased product yield or failure of the reaction. Hairpins, which consist of internal folds caused by base-pairing between nucleotides in inverted repeats within single-stranded DNA, are common secondary structures and may result in failed PCRs.

  6. Helicase-dependent amplification - Wikipedia

    en.wikipedia.org/wiki/Helicase-dependent...

    The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...

  7. Hot start PCR - Wikipedia

    en.wikipedia.org/wiki/Hot_start_PCR

    Hot start PCR follows the same principles as the conventional PCR - in that it uses DNA polymerase to synthesise DNA from a single stranded template. [4] However, it utilizes additional heating and separation methods, such as inactivating or inhibiting the binding of Taq polymerase and late addition of Taq polymerase, to increase product yield ...

  8. Dideoxynucleotide - Wikipedia

    en.wikipedia.org/wiki/Dideoxynucleotide

    The dye nucleotide to be used will likely occur by treatment with a phosphorylation enzyme and biotinylation and reaction of the biotinylated substance with the dye. It is possible that immediate reaction with the dye may also occur, but extending the arm is claimed to increase efficiency in the case of using a mutant form of DNA polymerase. [5]

  9. COLD-PCR - Wikipedia

    en.wikipedia.org/wiki/COLD-PCR

    Thus the denaturation can occur at the Tc, proceed to primer annealing, and then polymerase-mediated extension. Each round of amplification will include these three stages in that order. By utilizing the lower denaturation temperature, the reaction will discriminate toward the products with the lower Tm – i.e. the variant alleles.