Search results
Results from the WOW.Com Content Network
With body-centered cubic materials (bcc), the Wöhler curve often becomes a horizontal line with decreasing stress amplitude, i.e. there is a fatigue strength that can be assigned to these materials. With face-centered cubic metals (fcc), the Wöhler curve generally drops continuously, so that only a fatigue limit can be assigned to these ...
The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...
Curve A shows the fatigue behavior of a material tested in air. A fatigue threshold (or limit) is seen in curve A, corresponding to the horizontal part of the curve. Curves B and C represent the fatigue behavior of the same material in two corrosive environments. In curve B, the fatigue failure at high stress levels is retarded, and the fatigue ...
The degree of plasticity at the crack tip is influenced by the level of material constraint. The two extreme cases are: Under plane stress conditions, the piece of material in the plastic zone is elongated, which is mainly balanced by an out-of-the-plane flow of the material. Hence, the plasticity-induced crack closure under plane stress ...
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Brittle materials will typically fail at the stress concentration. However, repeated low level loading may cause a fatigue crack to initiate and slowly grow at a stress concentration leading to the failure of even ductile materials. Fatigue cracks always start at stress raisers, so removing such defects increases the fatigue strength.
With static fatigue materials experience damage or failure under stress levels that are lower than their normal ultimate tensile strengths. [2] The exact details vary with the material type and environmental factors, such as moisture presence [3] and temperature. [4] [5] This phenomenon is closely related to stress corrosion cracking. [1]