Search results
Results from the WOW.Com Content Network
Although ERA is intended to replace sidereal time, there is a need to maintain definitions for sidereal time during the transition, and when working with older data and documents. Similarly to mean solar time, every location on Earth has its own local sidereal time (LST), depending on the longitude of the point.
The local hour angle (LHA) of an object in the observer's sky is = or = + where LHA object is the local hour angle of the object, LST is the local sidereal time, is the object's right ascension, GST is Greenwich sidereal time and is the observer's longitude (positive east from the prime meridian). [3]
Sidereal time is the hour angle of the equinox. However, there are two types: if the mean equinox is used (that which only includes precession), it is called mean sidereal time; if the true equinox is used (the actual location of the equinox at a given instant), it is called apparent sidereal time.
The equation of time is the east or west component of the analemma, a curve representing the angular offset of the Sun from its mean position on the celestial sphere as viewed from Earth. The equation of time values for each day of the year, compiled by astronomical observatories, were widely listed in almanacs and ephemerides. [2] [3]: 14
In 1928, the term Universal Time (UT) was introduced by the International Astronomical Union to refer to GMT, with the day starting at midnight. [8] The term was recommended as a more precise term than Greenwich Mean Time, because GMT could refer to either an astronomical day starting at noon or a civil day starting at midnight. [9]
One sidereal hour (approximately 0.9973 solar hours) later, Earth's rotation will carry the star to the west of the meridian, and its hour angle will be 1 h. When calculating topocentric phenomena, right ascension may be converted into hour angle as an intermediate step.
[1] [7] By comparing the corrected lunar distance with the tabulated values, the navigator finds the Greenwich time for that observation. Knowing Greenwich time and local time, the navigator can work out longitude. [1] Local time can be determined from a sextant observation of the altitude of the Sun or a star. [8] [9] Then the longitude ...
In physics, sometimes units of measurement in which c = 1 are used to simplify equations. Time in a "moving" reference frame is shown to run more slowly than in a "stationary" one by the following relation (which can be derived by the Lorentz transformation by putting ∆x′ = 0, ∆τ = ∆t′):