Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal , ordinal , interval , and ratio .
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
Pairwise comparison scale – a respondent is presented with two items at a time and asked to select one (example : does one prefer Pepsi or Coke?). This is an ordinal level technique when a measurement model is not applied. Krus and Kennedy (1977) elaborated the paired comparison scaling within their domain-referenced model.
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
The level of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio, difference, or ordinal preference. The type is commonly not explicitly expressed, but implicit in the definition of a measurement procedure.
Definition: Guttman scale is a data set for which there exists an ordinal variable, X, with a finite number m of categories, say, 1,...,m with m≥ max j (k j) and a permutation of subjects' profiles such that each variable in the data set is a simple function of X.
Categorical variables have two types of scales, ordinal and nominal. [1] The first type of categorical scale is dependent on natural ordering, levels that are defined by a sense of quality. Variables with this ordering convention are known as ordinal variables. In comparison, variables with unordered scales are nominal variables. [1]