Search results
Results from the WOW.Com Content Network
The general structure of a phosphite ester showing the lone pairs on the P. In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR) 3. They can be considered as esters of an unobserved tautomer phosphorous acid, H 3 PO 3, with the simplest example being trimethylphosphite ...
Solvents are often not used for this reaction, though there is precedent for the improvement of selectivity with its usage. [5] Phosphonites are generally more reactive than phosphite esters. They react to produce phosphinates. Heating is also required for the reaction, but pyrolysis of the ester to an acid is a common side reaction. The poor ...
Phosphites, sometimes called phosphite esters, have the general structure P(OR) 3 with oxidation state +3. Such species arise from the alcoholysis of phosphorus trichloride: PCl 3 + 3 ROH → P(OR) 3 + 3 HCl. The reaction is general, thus a vast number of such species are known.
The Perkow reaction is an organic reaction in which a trialkyl phosphite ester reacts with a haloketone to form a dialkyl vinyl phosphate and an alkyl halide. [1] The Perkow reaction
The phosphite esters and tertiary phosphines also effect reduction: ROOH + PR 3 → P(OR) 3 + ROH. Cleavage to ketones and alcohols occurs in the base-catalyzed Kornblum–DeLaMare rearrangement, which involves the breaking of bonds within peroxides to form these products.
The Michaelis–Arbuzov reaction is the chemical reaction of a trivalent phosphorus ester with an alkyl halide to form a pentavalent phosphorus species and another alkyl halide. Commonly, the phosphorus substrate is a phosphite ester (P(OR) 3) and the alkylating agent is an alkyl iodide. [11] The mechanism of the Michaelis–Arbuzov reaction
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4. The phosphate or orthophosphate ion [PO 4] 3− is derived from phosphoric acid by the removal of three protons H +.
This reaction is the basis of methods for analysis of organic peroxides. [5] Another way to evaluate the content of peracids and peroxides is the volumetric titration with alkoxides such as sodium ethoxide. [6] The phosphite esters and tertiary phosphines also effect reduction: ROOH + PR 3 → OPR 3 + ROH