enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  4. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The above identity can be used to evaluate sums of the form = = = (), where p(n) and q(n) are polynomials of n. Performing partial fraction on u n in the complex field, in the case when all roots of q(n) are simple roots,

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.

  6. Euler summation - Wikipedia

    en.wikipedia.org/wiki/Euler_summation

    In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...

  7. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    The fact that π cot(πz) has simple poles with residue 1 at each integer can be used to compute the sum = (). Consider, for example, f(z) = z −2. Let Γ N be the rectangle that is the boundary of [−N − ⁠ 1 / 2 ⁠, N + ⁠ 1 / 2 ⁠] 2 with positive orientation, with an integer N. By the residue formula,

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Similarly, in a series, any finite groupings of terms of the series will not change the limit of the partial sums of the series and thus will not change the sum of the series. However, if an infinite number of groupings is performed in an infinite series, then the partial sums of the grouped series may have a different limit than the original ...

  1. Related searches how to evaluate infinite sums of two series in matlab table to print the number

    infinite sums in mathlist of mathematical sums