Search results
Results from the WOW.Com Content Network
The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate parameter: λ −1 ln 2.
Okumura's model is one of the most widely used models for signal prediction in urban areas. This model is applicable for frequencies in the range 150–1920 MHz (although it is typically extrapolated up to 3000 MHz) and distances of 1–100 km. It can be used for base-station antenna heights ranging from 30–1000 m.
A frequency distribution shows a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc.
Each standard deviation represents a fixed percentile. Thus, rounding to two decimal places, −3σ is the 0.13th percentile, −2σ the 2.28th percentile, −1σ the 15.87th percentile, 0σ the 50th percentile (both the mean and median of the distribution), +1σ the 84.13th percentile, +2σ the 97.72nd percentile, and +3σ the 99
The quantiles of a random variable are preserved under increasing transformations, in the sense that, for example, if m is the median of a random variable X, then 2 m is the median of 2 X, unless an arbitrary choice has been made from a range of values to specify a particular quantile. (See quantile estimation, above, for examples of such ...
The median is the "middle" number of the ordered data set. This means that exactly 50% of the elements are below the median and 50% of the elements are greater than the median. The median of this ordered data set is 70°F. The first quartile value (Q 1 or 25th percentile) is the number that marks one quarter of the ordered data set. In other ...
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample.
For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour −1)×(1 nanosecond) ≈ 6 × 10 −13 (using the unit conversion 3.6 × 10 12 nanoseconds = 1 hour). There is a probability density function f with f(5 hours) = 2 hour −1.