enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    That is, the individual gravitational forces exerted on a point at radius r 0 by the elements of the mass outside the radius r 0 cancel each other. As a consequence, for example, within a shell of uniform thickness and density there is no net gravitational acceleration anywhere within the hollow sphere.

  3. Transit-timing variation - Wikipedia

    en.wikipedia.org/wiki/Transit-timing_variation

    In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [note 17] For example, the Sun and the Earth pull on each other gravitationally, despite being separated by millions of kilometres. This contrasts with the idea, championed by Descartes among others, that the Sun's gravity held planets in orbit by swirling them in a vortex of transparent matter, aether. [121]

  5. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The equation of motion for the particle derived above = + + can be rewritten using the definition of the Schwarzschild radius r s as = [] + + (+) which is equivalent to a particle moving in a one-dimensional effective potential = + (+) The first two terms are well-known classical energies, the first being the attractive Newtonian gravitational ...

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The Hohmann transfer orbit alone is a poor approximation for interplanetary trajectories because it neglects the planets' own gravity. Planetary gravity dominates the behavior of the spacecraft in the vicinity of a planet and in most cases Hohmann severely overestimates delta-v, and produces highly inaccurate prescriptions for burn timings.

  8. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    If k 2 is greater than one, F 2 − F 1 is a negative number; thus, the added inverse-cube force is attractive, as observed in the green planet of Figures 1–4 and 9. By contrast, if k 2 is less than one, F 2 − F 1 is a positive number; the added inverse-cube force is repulsive , as observed in the green planet of Figures 5 and 10, and in ...