Search results
Results from the WOW.Com Content Network
An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric. The gravity depends only on the mass inside the sphere of radius r. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another ...
The value of ɡ 0 defined above is a nominal midrange value on Earth, originally based on the acceleration of a body in free fall at sea level at a geodetic latitude of 45°. Although the actual acceleration of free fall on Earth varies according to location, the above standard figure is always used for metrological purposes.
Non-zero coefficients C n m, S n m correspond to a lack of rotational symmetry around the polar axis for the mass distribution of Earth, i.e. to a "tri-axiality" of Earth. For large values of n the coefficients above (that are divided by r ( n + 1) in ( 9 )) take very large values when for example kilometers and seconds are used as units.
GeographicLib provides a utility GeoidEval (with source code) to evaluate the geoid height for the EGM84, EGM96, and EGM2008 Earth gravity models. Here is an online version of GeoidEval . The Tracker Component Library from the United States Naval Research Laboratory is a free Matlab library with a number of gravitational synthesis routines.
Geopotential is the potential of the Earth's gravity field.For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation.
The test mass is sealed in an air-tight container so that tiny changes of barometric pressure from blowing wind and other weather do not change the buoyancy of the test mass in air. Spring gravimeters are, in practice, relative instruments that measure the difference in gravity between different locations.
This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value). The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion ...
Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level (assumed zero geopotential) that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. [1]