Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
For algorithms describing how to calculate the remainder, see Division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q ⋅ d and ( q + 1) d (for positive q ).
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
After each step k of the Euclidean algorithm, the norm of the remainder f(r k) is smaller than the norm of the preceding remainder, f(r k−1). Since the norm is a nonnegative integer and decreases with every step, the Euclidean algorithm for Gaussian integers ends in a finite number of steps. [ 144 ]
Language syntax similar to MATLAB. Used for numerical computing in engineering and physics. Smath Studio: SMath LLC (Andrey Ivashov) 2006 1.0.8348 11 September 2022: Free Creative Commons Attribution-NoDerivs (CC-BY-ND) Mathematical notebook program, similar to Mathcad, with support for Plugins (e.g. Maxima plugin available) Sysquake: Calerga ...
where 0 ≤ r < m is the common remainder. We recover the previous relation ( a − b = k m ) by subtracting these two expressions and setting k = p − q . Because the congruence modulo m is defined by the divisibility by m and because −1 is a unit in the ring of integers, a number is divisible by − m exactly if it is divisible by m .
Divide the highest term of the remainder by the highest term of the divisor (x 2 ÷ x = x). Place the result (+x) below the bar. x 2 has been divided leaving no remainder, and can therefore be marked as used. The result x is then multiplied by the second term in the divisor −3 = −3x. Determine the partial remainder by subtracting 0x − ...