Search results
Results from the WOW.Com Content Network
Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 22 ] F = m d v d t ...
i.e. they take the form of Newton's second law applied to a single particle with the unit mass =.. Definition.The equations are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system.
A newton is defined as 1 kg⋅m/s 2, which is the force which gives a mass of 1 kilogram an acceleration of 1 metre per second, per second. Newton's law of universal gravitation – is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
Since the definition of acceleration is a = dv/dt, the second law can be written in the simplified and more familiar form: F = m a . {\displaystyle \mathbf {F} =m\mathbf {a} \,.} So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle.
The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...
Newton's method has been successfully applied to a wide range of physical problems, including the motion of a particle in Earth's gravitational field and the motion of planets around the Sun. In this approach, Newton's laws describe the motion by a differential equation and then the problem is reduced to the solving of that equation.