Search results
Results from the WOW.Com Content Network
In essence probability is influenced by a person's information about the possible occurrence of an event. For example, let the event A {\displaystyle A} be 'I have a new phone'; event B {\displaystyle B} be 'I have a new watch'; and event C {\displaystyle C} be 'I am happy'; and suppose that having either a new phone or a new watch increases ...
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
In probability theory, a conditional event algebra (CEA) is an alternative to a standard, Boolean algebra of possible events (a set of possible events related to one another by the familiar operations and, or, and not) that contains not just ordinary events but also conditional events that have the form "if A, then B".
Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.