enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.

  3. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  4. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  5. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s 2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s 2 at the surface of the Arctic Ocean. [6] In large cities, it ranges from 9.7806 m/s 2 [7] in Kuala Lumpur, Mexico City, and Singapore to 9.825 m/s 2 in Oslo and Helsinki.

  8. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Since 2012, the AU is defined as 1.495 978 707 × 10 11 m exactly, and the equation can no longer be taken as holding precisely. The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ ).

  9. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    If the pilot were suddenly to pull back on the stick and make his plane accelerate upwards at 9.8 m/s 2, the total g‑force on his body is 2 g, half of which comes from the seat pushing the pilot to resist gravity, and half from the seat pushing the pilot to cause his upward acceleration—a change in velocity which also is a proper ...