enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems, g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [2]

  3. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The value of this standard acceleration due to gravity is equal to the acceleration due to gravity at the International Bureau (alongside the Pavillon de Breteuil) divided by 1.0003322, the theoretical coefficient required to convert to a latitude of 45° at sea level.

  4. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    1 g: Saturn V Moon rocket just after launch and the gravity of Neptune where atmospheric pressure is about Earth's 1.14 g: Bugatti Veyron from 0 to 100 km/h in 2.4 s 1.55 g [b] Gravitron amusement ride 2.5–3 g: Gravity of Jupiter at its mid-latitudes and where atmospheric pressure is about Earth's 2.528 g

  5. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  7. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    The use of g units refers to the fact that an observer on board an aircraft will experience an apparent acceleration of gravity (i.e. relative to their frame of reference) equal to load factor times the acceleration of gravity. For example, an observer on board an aircraft performing a turn with a load factor of 2 (i.e. a 2 g turn) will see ...

  8. Gravitational metric system - Wikipedia

    en.wikipedia.org/wiki/Gravitational_metric_system

    In Germany, the kilopond lost its legal status as a unit of force on 1 January 1978, when for legal purposes the SI unit system was adopted. [3] A kilopond can be converted to the SI unit newton by multiplication with the standard acceleration g n: 1 kp = g n ⋅ 1 kg = 9.806 65 kg⋅m⋅s −2 = 9.806 65 N

  9. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...