enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    The corresponding values for Earth are currently 23 h 56 m 4.0916 s and 24 h 00 m 00.002 s, respectively, which yields a conversion factor of 1.027 491 2517 Earth days/sol: thus, Mars's solar day is only about 2.75% longer than Earth's; approximately 73 sols pass for every 75 Earth days.

  3. Astronomy on Mars - Wikipedia

    en.wikipedia.org/wiki/Astronomy_on_Mars

    The phase of the Moon as seen from Mars would not change much from day to day; it would match the phase of the Earth, and would only gradually change as both Earth and Moon move in their orbits around the Sun. On the other hand, an observer on Mars would see the Moon rotate, with the same period as its orbital period, and would see far side ...

  4. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    Earth vs Mars vs Moon gravity at elevation. The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.728 m/s 2 (about ...

  5. Mars sol - Wikipedia

    en.wikipedia.org/wiki/Mars_sol

    The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]

  6. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).

  7. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...

  8. Synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Synchronous_orbit

    A synchronous orbit around Earth that is circular and lies in the equatorial plane is called a geostationary orbit. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a geosynchronous orbit. The corresponding terms for synchronous orbits around Mars are areostationary and areosynchronous orbits.

  9. Free-return trajectory - Wikipedia

    en.wikipedia.org/wiki/Free-return_trajectory

    Sketch of a circumlunar free return trajectory (not to scale), plotted on the rotating reference frame rotating with the moon. (Moon's motion only shown for clarity) In orbital mechanics, a free-return trajectory is a trajectory of a spacecraft traveling away from a primary body (for example, the Earth) where gravity due to a secondary body (for example, the Moon) causes the spacecraft to ...