Search results
Results from the WOW.Com Content Network
In logic, equality is a primitive predicate (a statement that may have free variables) with the reflexive property (called the Law of identity), and the substitution property. From those, one can derive the rest of the properties usually needed for equality.
In mathematics, Euler's identity [note 1] (also known as Euler's equation) is the equality + = where e {\displaystyle e} is Euler's number , the base of natural logarithms , i {\displaystyle i} is the imaginary unit , which by definition satisfies i 2 = − 1 {\displaystyle i^{2}=-1} , and
The first thousand values of φ(n).The points on the top line represent φ(p) when p is a prime number, which is p − 1. [1]In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles .
To say that an element a in a magma (M, ∗) is left-cancellative, is to say that the function g : x ↦ a ∗ x is injective. [1] That the function g is injective implies that given some equality of the form a ∗ x = b, where the only unknown is x, there is only one possible value of x satisfying the equality.
A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings.
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
Chebyshev's inequality is an equality for precisely those distributions which are affine ... The table allows the calculation of various confidence intervals for the ...