Search results
Results from the WOW.Com Content Network
The polarities in this example are relevant to the UK. The permanent magnet produces a south pole in the UK. Other countries may use permanent magnet that produces a north pole. The key operational principle is that the electromagnet produces the opposite pole of the permanent magnet.
Polar drift is a geological phenomenon caused by variations in the flow of molten iron in Earth's outer core, resulting in changes in the orientation of Earth's magnetic field, and hence the position of the magnetic north- and south poles. The North magnetic pole is approximately 965 kilometres (600 mi) from the geographic North Pole. The pole ...
True polar wander is a solid-body rotation (or reorientation) of a planet or moon with respect to its spin axis, causing the geographic locations of the north and south poles to change, or "wander". In rotational equilibrium, a planetary body has the largest moment of inertia axis aligned with the spin axis, with the smaller two moments of ...
And there’s the magnetic North Pole, which is always on the move. And right now it’s moving faster than usual. Over the past 150 years, the magnetic North Pole has casually wandered 685 miles ...
British explorer Sir James Clark Ross discovered the magnetic north pole in 1831 in northern Canada, approximately 1,000 miles (1,609 kilometers) south of the true North Pole.
The Earth's Magnetic North Pole is actually considered the "south pole" in terms of a typical magnet, meaning that the north pole of a magnet would be attracted to the Earth's Magnetic North Pole. [2] The north magnetic pole moves over time according to magnetic changes and flux lobe elongation [3] in the Earth's outer core. [4]
Like the North Magnetic Pole, the North Geomagnetic Pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the 'open' magnetic field lines which connect to the interplanetary magnetic field and provide a direct route for the solar wind to reach the ionosphere.
The duration of a full reversal varies between 2,000 and 12,000 years. [3] Although there have been periods in which the field reversed globally (such as the Laschamp excursion) for several hundred years, [4] these events are classified as excursions rather than full geomagnetic reversals. Stable polarity chrons often show large, rapid ...