Search results
Results from the WOW.Com Content Network
Matplotlib can create plots in a variety of output formats, such as PNG and SVG. Matplotlib mainly does 2-D plots (such as line, contour, bar, scatter, etc.), but 3-D functionality is also available. A simple SVG line plot with Matplotlib. Here is a minimal line plot (output image is shown on the right):
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.
The PPCC plot is used first to find a good value of the shape parameter. The probability plot is then generated to find estimates of the location and scale parameters and in addition to provide a graphical assessment of the adequacy of the distributional fit. The PPCC plot answers the following questions:
The probability density function of the Erlang distribution is (;,) = ()!,,The parameter k is called the shape parameter, and the parameter is called the rate parameter.. An alternative, but equivalent, parametrization uses the scale parameter , which is the reciprocal of the rate parameter (i.e., = /):
Weibull plot. The fit of a Weibull distribution to data can be visually assessed using a Weibull plot. [17] The Weibull plot is a plot of the empirical cumulative distribution function ^ of data on special axes in a type of Q–Q plot.
A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...
If the sample space of the Dirichlet distribution is interpreted as a discrete probability distribution, then intuitively the concentration parameter can be thought of as determining how "concentrated" the probability mass of the Dirichlet distribution to its center, leading to samples with mass dispersed almost equally among all components, i ...