Search results
Results from the WOW.Com Content Network
The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]
A high degree of flexibility is present in plate-fin heat exchanger design as they can operate with any combination of gas, liquid, and two-phase fluids. [3] Heat transfer between multiple process streams is also accommodated, [4] with a variety of fin heights and types as different entry and exit points available for each stream.
For example, at 60 Hz, a 2000 MCM (1000 square millimeter) copper conductor has 23% more resistance than it does at DC. The same size conductor in aluminum has only 10% more resistance with 60 Hz AC than it does with DC. [14] Skin depth also varies as the inverse square root of the permeability of the conductor. In the case of iron, its ...
Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral analysis of the boundary layer and analogies between energy and momentum transfer, these analytic approaches may not offer practical solutions to all problems when there are no mathematical models applicable.
Pillow-plate heat exchangers are a class of fully welded heat exchanger design, which exhibit a wavy, “pillow-shaped” surface formed by an inflation process. Compared to more conventional equipment, such as shell and tube and plate and frame heat exchangers, pillow plates are a quite young technology. Due to their geometric flexibility ...
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
Shell and tube heat exchangers require tubes to be plugged upon the detection of a leak. This prevents the two liquids from mixing inside the heat exchangers. In order to perform regular maintenance on a plate type heat exchanger, the plate stack is separated and the plates a cleaned to improve heat transfer. [3]
This cools the heat sink and whatever it is in direct thermal contact with. Use of fluids (for example coolants in refrigeration) and thermal interface material (in cooling electronic devices) ensures good transfer of thermal energy to the heat sink. Similarly, a fan may improve the transfer of thermal energy from the heat sink to the air.