enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    Uranium-238 (238 U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239.

  3. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  4. Weapons-grade nuclear material - Wikipedia

    en.wikipedia.org/wiki/Weapons-grade_nuclear_material

    Pu-239 is produced artificially in nuclear reactors when a neutron is absorbed by U-238, forming U-239, which then decays in a rapid two-step process into Pu-239. [22] It can then be separated from the uranium in a nuclear reprocessing plant. [23] Weapons-grade plutonium is defined as being predominantly Pu-239, typically about 93% Pu-239. [24]

  5. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  6. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor: 86,000,000: Reactor-grade uranium (3.5% U-235) in light-water reactor: 3,456,000: 35%: Pu-238 α-decay:

  7. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    While the natural abundance of uranium has been supplemented by the decay of extinct 242 Pu (half-life 375,000 years) and 247 Cm (half-life 16 million years), producing 238 U and 235 U respectively, this occurred to an almost negligible extent due to the shorter half-lives of these parents and their lower production than 236 U and 244 Pu, the ...

  8. Uranium ore - Wikipedia

    en.wikipedia.org/wiki/Uranium_ore

    It has the chemical symbol U and atomic number 92. The most common isotopes in natural uranium are 238 U (99.274%) and 235 U (0.711%). All uranium isotopes present in natural uranium are radioactive and fissionable, and 235 U is fissile (will support a neutron-mediated chain reaction). Uranium, thorium, and one radioactive isotope of potassium (40

  9. Uranium-236 - Wikipedia

    en.wikipedia.org/wiki/Uranium-236

    The most significant contribution to uranium-236 abundance in the environment is the 238 U(n,3n) 236 U reaction by fast neutrons in thermonuclear weapons. The A-bomb testing of the 1940s, 1950s, and 1960s has raised the environmental abundance levels significantly above the expected natural levels.