enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brouwer–Haemers graph - Wikipedia

    en.wikipedia.org/wiki/Brouwer–Haemers_graph

    The Brouwer–Haemers graph is the first in an infinite family of Ramanujan graphs defined as generalized Paley graphs over fields of characteristic three. [2] With the 3 × 3 {\displaystyle 3\times 3} Rook's graph and the Games graph , it is one of only three possible strongly regular graphs whose parameters have the form ( ( n 2 + 3 n − 1 ...

  3. Brouwer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Brouwer's_conjecture

    Brouwer has confirmed by computation that the conjecture is valid for all graphs with at most 10 vertices. [1] It is also known that the conjecture is valid for any number of vertices if t = 1, 2, n − 1, and n. For certain types of graphs, Brouwer's conjecture is known to be valid for all t and for any number of vertices

  4. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]

  5. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fully equivalent definition of a strongly regular graph based on spectral graph theory: a strongly regular graph is a finite regular graph that has exactly three eigenvalues, only one of which is equal to the degree k, of multiplicity 1.

  6. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.

  7. The Limits to Growth - Wikipedia

    en.wikipedia.org/wiki/The_Limits_to_Growth

    The Limits to Growth (LTG) is a 1972 report [2] that discussed the possibility of exponential economic and population growth with finite supply of resources, studied by computer simulation. [3]

  8. L. E. J. Brouwer - Wikipedia

    en.wikipedia.org/wiki/L._E._J._Brouwer

    Dutch mathematician and historian of mathematics Bartel Leendert van der Waerden attended lectures given by Brouwer in later years, and commented: "Even though his most important research contributions were in topology, Brouwer never gave courses in topology, but always on — and only on — the foundations of his intuitionism. It seemed that ...

  9. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    [13] Brouwer "flattens" his sheet as with a flat iron, without removing the folds and wrinkles. Unlike the coffee cup example, the crumpled paper example also demonstrates that more than one fixed point may exist. This distinguishes Brouwer's result from other fixed-point theorems, such as Stefan Banach's, that guarantee uniqueness.