Search results
Results from the WOW.Com Content Network
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.
Since the square root is a strictly concave function, it follows from Jensen's inequality that the square root of the sample variance is an underestimate. The use of n − 1 instead of n in the formula for the sample variance is known as Bessel's correction , which corrects the bias in the estimation of the population variance, and some, but ...
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
The sample mean is a random variable, not a constant, since its calculated value will randomly differ depending on which members of the population are sampled, and consequently it will have its own distribution. For a random sample of n independent observations, the expected value of the sample mean is
Considering the centered sample mean in this case, the random sample original distribution function is replaced by a bootstrap random sample with function ^, and the probability distribution of ¯ is approximated by that of ¯, where = ^, which is the expectation corresponding to ^. [25]
Fay's method is a generalization of BRR. Instead of simply taking half-size samples, we use the full sample every time but with unequal weighting: k for units outside the half-sample and 2 − k for units inside it. (BRR is the case k = 0.) The variance estimate is then V/(1 − k) 2, where V is the estimate given by the BRR formula above.
The above expression is sometimes referred to as Bienaymé's formula. Bienaymé's identity may be used in proving certain variants of the law of large numbers. [3] Estimated variance of the cumulative sum of iid normally distributed random variables (which could represent a gaussian random walk approximating a Wiener process). The sample ...