Search results
Results from the WOW.Com Content Network
The number of distinct Dyck words with exactly n pairs of parentheses is the n-th Catalan number. Notice that the Dyck language of words with n parentheses pairs is equal to the union, over all possible k, of the Dyck languages of words of n parentheses pairs with k innermost pairs, as defined in
The proof that the language of balanced (i.e., properly nested) parentheses is not regular follows the same idea. Given p {\displaystyle p} , there is a string of balanced parentheses that begins with more than p {\displaystyle p} left parentheses, so that y {\displaystyle y} will consist entirely of left parentheses.
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.
The syntactic monoid is the group of order 2 on {,}. [9] For the language (+), the minimal automaton has 4 states and the syntactic monoid has 15 elements. [10] The bicyclic monoid is the syntactic monoid of the Dyck language (the language of balanced sets of parentheses).
In theoretical computer science and formal language theory, a regular language (also called a rational language) [1] [2] is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages).
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).
In contrast to well-formed nested parentheses and square brackets in the previous section, there is no context-free grammar for generating all sequences of two different types of parentheses, each separately balanced disregarding the other, where the two types need not nest inside one another, for example: [ ( ] ) or